Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Speier, G. \& Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp 23312333.

Usubaliev, B. T., Movsumov, E. M., Musaev, F. N., Nadzhafov, G. N., Amiraslanov, I. R. \& Mamedov, Kh. S. (1980). Koord. Khim. 6, 1091-1096.

Acta Cryst. (1998). C54, 313-315

$\operatorname{Bis}\left(\mathbf{2}, \mathbf{2}^{\prime}\right.$-bipyridine- N, N^{\prime})(isocyanato- N)copper(II) Tricyanomethanide

Ivan Potoč̌̌ák, ${ }^{a}$ Michal Duna-Jurčo, ${ }^{a}$ Dušan Mikloša and Lothar Jäger ${ }^{b}$
${ }^{a}$ Department of Inorganic Chemistry, Slovak Technical University, Radlinského 9, 81237 Bratislava, Slovakia, and
${ }^{b}$ Institut of Inorganic Chemistry, Martin-Luther-University, Halle-Wittenberg, Weinbergweg 16, 06120 Halle/Saale, Germany.E-mail: potocnak@cvtstu.cvt.stuba.sk

(Received 9 July 1997; accepted 23 October 1997)

Abstract

The crystal structure of $\left[\mathrm{Cu}(\mathrm{NCO})\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left[\mathrm{C}(\mathrm{CN})_{3}\right]$ is formed by discrete $\left[\mathrm{Cu}(\text { bipy })_{2}(\mathrm{NCO})\right]^{+}$cations and $\left[\mathrm{C}(\mathrm{CN})_{3}\right]^{-}$anions (bipy is $2,2^{\prime}$-bipyridine). The coordination polyhedron of the $\mathrm{Cu}^{\mathrm{II}}$ atom is a distorted trigonal bipyramid with a CuN_{5} chromophore.

Comment

In previous papers, we have described structures of compounds containing $\left[\mathrm{Cu}(\mathrm{phen})_{2}(\mathrm{X})\right]^{+}$cations [phen is 1,10-phenanthroline and X is a pseudohalogenide anion, i.e. $\mathrm{CN}^{-}, \mathrm{NCS}^{-}$or $\left.\mathrm{N}(\mathrm{CN})_{2}^{-}\right]$and $\left[\mathrm{C}(\mathrm{CN})_{3}\right]^{-}$anions (Potočňák et al., 1996a,b,c). Our attempts to prepare a similar compound with $X=\mathrm{NCO}^{-}$have always resulted in blue needles of $\left[\mathrm{Cu}(\mathrm{phen})(\mathrm{NCO})_{2}\right]$, the structure of which is already known (Jin et al., 1991). On the other hand, replacement of phenanthroline with the $2,2^{\prime}$-bipyridine ligand yields $\left[\mathrm{Cu}(\text { bipy })_{2}(\mathrm{NCO})\right]\left[\mathrm{C}(\mathrm{CN})_{3}\right]$, (I), the preparation and crystal structure of which are presented here and compared with related compounds containing the phenanthroline ligand.

(I)

The labeling scheme of one formula unit is shown in Fig. 1. The coordination polyhedron around the Cu atom is a distorted trigonal bipyramid. The Cu atom is five-coordinated by four N atoms of the two bipy molecules and one N atom (in the equatorial plane) of the NCO^{-}ligand. The tcm^{-}anion [$\mathrm{tcm}{ }^{-}$is $\mathrm{C}(\mathrm{CN})_{3}^{-}$] does not enter the inner coordination sphere. The two out-of-plane $\mathrm{Cu}-\mathrm{N} 20$ and $\mathrm{Cu}-\mathrm{N} 40$ bonds in (I) have similar values [2.003 (3) and 1.983 (3) \AA, respectively], and are almost collinear [$\left.\mathrm{N} 20-\mathrm{Cu}-\mathrm{N} 40171.64(13)^{\circ}\right]$. The two in-plane $\mathrm{Cu}-\mathrm{N}$ bonds $(\mathrm{Cu}-\mathrm{N} 10$ and $\mathrm{Cu}-$ N30) have different values [2.158 (3) and 2.054 (3) \AA, respectively] and they are longer on average than the out-of-plane $\mathrm{Cu}-\mathrm{N}$ distances by $0.106 \AA$. The third inplane $\mathrm{Cu}-\mathrm{N} 5$ (N from the NCO^{-}ligand) bond of 1.949 (4) \AA is the shortest bond in the coordination polyhedron. The out-of-plane angles lie within the range 78.26 (13)-96.32(12) ${ }^{\circ}$. All mentioned values of bond distances and angles are comparable with those of the previously published compounds containing phen.

Fig. 1. ORTEP (Johnson, 1965) drawing of the formula unit and labeling of atoms. Displacement ellipsoids are plotted at the 40% probability level.

The bond angles in the equatorial plane of (I) differ considerably from the ideal trigonal angle of 120°, with one large angle of $141.7(2)^{\circ}\left(\alpha_{1}=\mathrm{N} 5-\mathrm{Cu}-\mathrm{N} 30\right)$ and two small angles of 114.54 (14) ($\alpha_{2}=\mathrm{N} 5-\mathrm{Cu}-$ $\mathrm{N} 10)$ and $103.78(12)^{\circ}\left(\alpha_{3}=\mathrm{N} 30-\mathrm{Cu}-\mathrm{N} 10\right)$. Thus, the angle α_{3} is narrower than the ideal angle of 120° by 16.22° and there is a difference of 27.16° between α_{1} and α_{2}. According to the criteria of Harrison \& Hathaway (1980), the coordination polyhedron around the Cu atom can be best described as distorted trigonal bipyramidal with the square-pyramidal distortion shown by the elongated $\mathrm{Cu}-\mathrm{N} 10$ equatorial bond. On the other hand, according to the values of the angles α_{1}, α_{2} and α_{3} for pentacoordinated compounds with two phen molecules, their coordination polyhedra can be best described as trigonal bipyramidal with near $C_{2 v}$ symmetry. The sum of the bond angles in the equatorial

ISSN 0108-2701 © 1998
plane of the title compound $\left(360.02^{\circ}\right)$ indicates coplanarity of the Cu atom with the three equatorial atoms [the deviation of the Cu atom from the $\mathrm{N} 5, \mathrm{~N} 10, \mathrm{~N} 30$ plane is 0.000 (2) \AA].

Owing to steric considerations in the trigonalbipyramidal polyhedron, the N atoms of the bipy molecules are coordinated both in equatorial and axial positions. Both bipy molecules are nearly planar [the largest deviation of atoms from the mean planes is 0.088 (5) \AA]. The mean planes of the two bipy molecules are inclined at $104.69(8)^{\circ}$ with respect to one another. The aromatic bond distances of both bipy molecules are normal and range from 1.324 (5) to 1.344 (4) A for $\mathrm{N}-\mathrm{C}$ bonds, and from 1.350 (7) to 1.393 (5) \AA for $\mathrm{C}-\mathrm{C}$ bonds, single $\mathrm{C}-\mathrm{C}$ bonds being 1.474 (5) and 1.492 (5) \AA. The values of the bond angles within each pyridine ring of both bipy molecules range from 117.4(4) to $123.0(4)^{\circ}$, while the values of angles around the $\mathrm{C}-\mathrm{C}$ bond between the two pyridine rings lie in a somewhat larger range.

The bonding mode of the almost linear isocyanato anion [N5-C5-O5 $176.8(5)^{\circ}$] can be considered as angular $\left[\mathrm{Cu}-\mathrm{N} 5-\mathrm{C} 5146.3(4)^{\circ}\right]$. Both the bond distances [$\mathrm{N} 5-\mathrm{C} 51.150$ (5) and C5-O5 1.192 (5) A $]$ and angles in the isocyanato anion correspond to the values found for the bridging isocyanato anion in $\left[\mathrm{Cu}(\mathrm{phen})(\mathrm{NCO})_{2}\right]$ (Jin et al., 1991).

The tcm^{-}anion is almost planar [the largest deviation of atoms from the mean plane is 0.016 (6) A]. The mode of bonding in the tcm^{-}anion can be described as a largely delocalized π-bonding system (Golub et al., 1986). According to this assumption, the $\mathrm{C}-\mathrm{C}$ lengths around the central Cl atom have similar values and they are considerably shorter than single $\mathrm{C}_{s p^{2}}-\mathrm{C}_{s p}$ bonds ($1.440 \AA$). Although the triple $\mathrm{C} \equiv \mathrm{N}$ bond lengths are the same within 2σ, contrary to the above assumption, they are slightly shorter than normal $\mathrm{C} \equiv \mathrm{N}$ triple-bond lengths $(1.153 \mathrm{~A})$. The angles around the central C atom are close to the ideal value of 120°, while the $\mathrm{C} 1-$ $\mathrm{C} n \equiv \mathrm{~N} n(n=2,3,4)$ angles are almost linear.

Experimental

Crystals of (I) were prepared by mixing 10 ml of a 0.1 M water solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ with 20 ml of a 0.1 M ethanol solution of bipyridine, followed by addition of 10 ml of a 0.1 M water-ethanol ($1: 1$) solution of KNCO and 10 ml of a 0.15 M water-ethanol ($1: 1$) solution of $\mathrm{KC}(\mathrm{CN})_{3}$. The resulting blue precipitate was dissolved by adding 0.3 ml of concentrated ammonia solution. Turquoise crystals of the titie complex appeared over a period of several days.

Crystal data

$\left[\mathrm{Cu}(\mathrm{NCO})\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]-$	$\mathrm{Mo} K \alpha$ radiation
$\left(\mathrm{C}_{4} \mathrm{~N}_{3}\right)$	$\lambda=0.71073 \AA$
$M_{r}=508.00$	Cell parameters from 17
Triclinic	reflections
$P \mathbf{1}$	$\theta=4.16-11.26^{\circ}$

```
\(a=8.955(4) \AA\)
\(\mu=1.006 \mathrm{~mm}^{-1}\)
\(b=9.702(5) \AA\)
\(c=14.003(5) \AA\)
\(T=293(2) \mathrm{K}\)
Prism
\(\alpha=84.72(3)^{\circ}\)
\(0.40 \times 0.20 \times 0.15 \mathrm{~mm}\)
\(\beta=85.00(3)^{\circ}\)
Turquoise
\(\gamma=68.74(3)^{\circ}\)
```

$V=1127.1(9) \AA^{3}$
$Z=2$
$D_{x}=1.497 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.484(1) \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in
$\mathrm{CCl}_{4} /$ benzene

Data collection
Syntex $P 2_{1}$ diffractometer

$\theta / 2 \theta$ scans

Absorption correction:
ψ scan (North et al., 1968)
$T_{\text {min }}=0.703, T_{\text {max }}=0.860$
4337 measured reflections
4337 independent reflections

$$
\begin{aligned}
& 1751 \text { reflections with } \\
& I>2 \sigma(I) \\
& \theta_{\text {max }}=27.56^{\circ} \\
& h=0 \rightarrow 11 \\
& k=-11 \rightarrow 12 \\
& l=-17 \rightarrow 18 \\
& 3 \text { standard reflections } \\
& \text { every } 100 \text { reflections } \\
& \text { intensity decay: }<3 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.070$
$S=0.691$
4336 reflections
380 parameters
All H atoms refined
$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\text {max }}=0.150 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {max }}=0.150 \mathrm{e} \AA \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.200 \mathrm{e} \AA^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

All
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0573 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$

$\mathrm{Cu}-\mathrm{N} 5$	$1.949(4)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.390(6)$
$\mathrm{Cu}-\mathrm{N} 40$	$1.983(3)$	$\mathrm{C} 1-\mathrm{C} 4$	$1.386(7)$
$\mathrm{Cu}-\mathrm{N} 20$	$2.003(3)$	$\mathrm{Cl}-\mathrm{C} 3$	$1.416(6)$
$\mathrm{Cu}-\mathrm{N} 30$	$2.054(3)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.142(5)$
$\mathrm{Cu}-\mathrm{N} 10$	$2.158(3)$	$\mathrm{N} 4-\mathrm{C} 4$	$1.138(6)$
$\mathrm{N} 5-\mathrm{C} 5$	$1.150(5)$	$\mathrm{N} 3-\mathrm{C} 3$	$1.145(5)$
$\mathrm{C} 5-\mathrm{O} 5$	$1.192(5)$		
$\mathrm{N} 5-\mathrm{Cu}-\mathrm{N} 40$	$95.08(14)$	$\mathrm{N} 30-\mathrm{Cu}-\mathrm{N} 10$	$103.78(12)$
$\mathrm{N} 5-\mathrm{Cu}-\mathrm{N} 20$	$92.98(14)$	$\mathrm{C} 5-\mathrm{N} 5-\mathrm{Cu}$	$146.3(4)$
$\mathrm{N} 40-\mathrm{Cu}-\mathrm{N} 20$	$171.64(13)$	$\mathrm{N} 5-\mathrm{C} 5-\mathrm{O} 5$	$176.8(5)$
$\mathrm{N} 5-\mathrm{Cu}-\mathrm{N} 30$	$141.7(2)$	$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 4$	$120.7(4)$
$\mathrm{N} 40-\mathrm{Cu}-\mathrm{N} 30$	$80.22(13)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3$	$117.5(4)$
$\mathrm{N} 20-\mathrm{Cu}-\mathrm{N} 30$	$94.79(12)$	$\mathrm{C} 4-\mathrm{Cl}-\mathrm{C} 3$	$121.7(4)$
$\mathrm{N} 5-\mathrm{Cu}-\mathrm{N} 10$	$114.54(14)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$179.5(4)$
$\mathrm{N} 40-\mathrm{Cu}-\mathrm{N} 10$	$96.32(12)$	$\mathrm{N} 4-\mathrm{C} 4-\mathrm{Cl}$	$177.3(5)$
$\mathrm{N} 20-\mathrm{Cu}-\mathrm{N} 10$	$78.26(13)$	$\mathrm{N} 3-\mathrm{C} 3-\mathrm{Cl}$	$176.7(5)$

Intensities were corrected for Lorentz and polarization factors using XP21 (Pavelčík, 1993). The structure was solved by direct methods with SHELXS86 (Sheldrick, 1990) and subsequent Fourier syntheses using SHELXL93 (Sheldrick, 1993). Anisotropic displacement parameters were refined for all non- H atoms. All H atoms were located from the difference Fourier map and refined with free isotropic displacement parameters. Geometrical analysis was performed using PARST (Nardelli, 1983) and SHELXL93. ORTEP (Johnson, 1965) was employed to produce the figure.
Data collection: Syntex $P 2_{1}$ software. Cell refinement: Syntex $P 2_{1}$ software. Software used to prepare material for publication: SHELXL93.

This work was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and Ministry of Education, Slovak Republik (Grant No. 1/1412/94).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KA1256). Services for accessing these data are described at the back of the journal.

References

Golub, A. M., Köhler, H. \& Skopenko, V. V. (1986). In Chemistry of Pseudohalogenides. Amsterdam: Elsevier.
Harrison, W. D. \& Hathaway, B. J. (1980). Acta Cryst. B36, 10691074.

Jin, K. T., Kabešová, M. \& Kožíšek, J. (1991). Collect. Czech. Chem. Commun. 56, 1601-1606.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Nardelli, M. (1983). Compuı. Chem. 7, 95-98.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Pavelčík, F. (1993). XP21. Comenius University, Pharmaceutical Faculty, Bratislava, Slovakia.
Potočňák, I., Dunaj-Jurčo, M., Mikloš, D. \& Jäger, L. (1996a). Acta Cryst. C52, 48-50.
Potočňák, I., Dunaj-Jurčo, M., Mikloš, D. \& Jäger, L. (1996b). Acta Cryst. C52, 532-535.
Potočňák, I., Dunaj-Jurčo, M., Mikloš, D. \& Jäger, L. (1996c). Acta Cryst. C52, 1653-1655.
Sheldrick, G. M. (1990). SHELXS86. Program for Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1998). C54, 315-317

Diphenylzirconocene

William Clegg, ${ }^{a}$ Lynne Horsburgh, ${ }^{a}$ David M. Lindsay ${ }^{b}$ and Robert E. Mulvey ${ }^{b}$
${ }^{a}$ Department of Chemistry, University of Newcastle upon Tyne, Newcastle upon Tyne NEI 7RU, England, and ${ }^{b}$ Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 IXL, Scotland. E-mail: w. clegg@ncl.ac.uk

(Received 6 November 1997; accepted 15 December 1997)

Abstract

The title compound, $\left[\mathrm{Zr}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]$, has two cyclopentadienyl and two phenyl ligands arranged in a distorted tetrahedral geometry around the Zr atom. Steric interactions produce an opening of the $\mathrm{Cp}-\mathrm{Zr}-\mathrm{Cp}$ angle to $131.7(1)^{\circ}$ and a tilting of both phenyl rings in their own planes about the $\mathrm{Zr}-\mathrm{C}$ bonds by several degrees.

Comment

Since the discovery by Sinn et al. (1980) that the zirconocene dichloride/methylaluminoxane system was effective as a homogeneous Ziegler-Natta catalyst, there has been considerable research into zirconocene derivatives as polymerization catalysts. Structural analysis of these zirconocenes may provide important clues to the mechanism of polymerization, as well as increasing our knowledge of the structural chemistry of organozirconium compounds.

One of the aims of our current research is to synthesize a mixed lithium-zirconium cluster. Diphenylzirconocene, (I), was chosen as one of the starting materials in the attempted preparation of such a cluster. It was first prepared by Samuel \& Rausch (1973) as a white solid, which is stable in air for short periods of time, but is unstable at elevated temperatures, decomposing at 413 K . We report here the previously unknown crystal structure of diphenylzirconocene.

(I)

Considering the two cyclopentadienyl (Cp) ligands as occupying one coordination site each, the coordination geometry of zirconium is a rather distorted tetrahedron, with the angle enclosed by the two Cp ligands opened up to $131.7(1)^{\circ}$ and all the other angles reduced from the ideal value of 109.5°. A search of the Cambridge Structural Database (Allen \& Kennard, 1993) reveals a large number of $\mathrm{Cp}_{2} \mathrm{ZrX}_{2}$ molecular structures, including those with substituted Cp ligands. Of these, 16 have monodentate carbon ligands X (alkyl, alkenyl, alkynyl, aryl or carbonyl) and no constraint on coordination geometry from linking of the Cp ligands through their substituents. The $X-\mathrm{Zr}-X$ angle varies widely, between 86.8 [for dicarbonylbis(indenyl)zirconium; Rausch et al., 1987] and 131.3° (for a mixed alkyl-alkenyl complex; Hey-Hawkins \& Lindenberg, 1992), while the range of $\mathrm{Cp}-\mathrm{Zr}-\mathrm{Cp}$ angles is much smaller, $126.9-145.0^{\circ}$. These variations appear to have mainly steric origins. The $\mathrm{Zr}-\mathrm{Cp}$ and $\mathrm{Zr}-$ $\mathrm{C}(\mathrm{Ph})$ distances in diphenylzirconocene lie well within the ranges observed for these other complexes.

The dihedral angle between the two Cp rings is $52.1(2)^{\circ}$, and that between the two phenyl rings is also 52.1 (2) ${ }^{\circ}$. Both phenyl substituents show a distortion from regular hexagonal geometry, with a reduced C-$\mathrm{C}-\mathrm{C}$ angle at the ipso-C atom, and each is tilted within its own plane relative to the $\mathrm{Zr}-\mathrm{C}$ bond, so that one $\mathrm{Zr}-\mathrm{C}-\mathrm{C}$ angle is markedly larger than the other, probably also to reduce steric interactions. There are no notably short intermolecular contacts. Highly

